3.915 \(\int \frac{1}{\sqrt{2+e x} \sqrt{12-3 e^2 x^2}} \, dx\)

Optimal. Leaf size=25 \[ -\frac{\tanh ^{-1}\left (\frac{1}{2} \sqrt{2-e x}\right )}{\sqrt{3} e} \]

[Out]

-(ArcTanh[Sqrt[2 - e*x]/2]/(Sqrt[3]*e))

________________________________________________________________________________________

Rubi [A]  time = 0.0153917, antiderivative size = 25, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 24, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.125, Rules used = {627, 63, 206} \[ -\frac{\tanh ^{-1}\left (\frac{1}{2} \sqrt{2-e x}\right )}{\sqrt{3} e} \]

Antiderivative was successfully verified.

[In]

Int[1/(Sqrt[2 + e*x]*Sqrt[12 - 3*e^2*x^2]),x]

[Out]

-(ArcTanh[Sqrt[2 - e*x]/2]/(Sqrt[3]*e))

Rule 627

Int[((d_) + (e_.)*(x_))^(m_.)*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[(d + e*x)^(m + p)*(a/d + (c*x)/e)^
p, x] /; FreeQ[{a, c, d, e, m, p}, x] && EqQ[c*d^2 + a*e^2, 0] && (IntegerQ[p] || (GtQ[a, 0] && GtQ[d, 0] && I
ntegerQ[m + p]))

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{1}{\sqrt{2+e x} \sqrt{12-3 e^2 x^2}} \, dx &=\int \frac{1}{\sqrt{6-3 e x} (2+e x)} \, dx\\ &=-\frac{2 \operatorname{Subst}\left (\int \frac{1}{4-\frac{x^2}{3}} \, dx,x,\sqrt{6-3 e x}\right )}{3 e}\\ &=-\frac{\tanh ^{-1}\left (\frac{1}{2} \sqrt{2-e x}\right )}{\sqrt{3} e}\\ \end{align*}

Mathematica [A]  time = 0.042496, size = 50, normalized size = 2. \[ \frac{\sqrt{e x-2} \sqrt{e x+2} \tan ^{-1}\left (\frac{1}{2} \sqrt{e x-2}\right )}{e \sqrt{12-3 e^2 x^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(Sqrt[2 + e*x]*Sqrt[12 - 3*e^2*x^2]),x]

[Out]

(Sqrt[-2 + e*x]*Sqrt[2 + e*x]*ArcTan[Sqrt[-2 + e*x]/2])/(e*Sqrt[12 - 3*e^2*x^2])

________________________________________________________________________________________

Maple [B]  time = 0.125, size = 50, normalized size = 2. \begin{align*} -{\frac{\sqrt{3}}{3\,e}\sqrt{-{e}^{2}{x}^{2}+4}{\it Artanh} \left ({\frac{\sqrt{3}}{6}\sqrt{-3\,ex+6}} \right ){\frac{1}{\sqrt{ex+2}}}{\frac{1}{\sqrt{-ex+2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(e*x+2)^(1/2)/(-3*e^2*x^2+12)^(1/2),x)

[Out]

-1/3*(-e^2*x^2+4)^(1/2)*3^(1/2)*arctanh(1/6*3^(1/2)*(-3*e*x+6)^(1/2))/(e*x+2)^(1/2)/(-e*x+2)^(1/2)/e

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{-3 \, e^{2} x^{2} + 12} \sqrt{e x + 2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+2)^(1/2)/(-3*e^2*x^2+12)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(-3*e^2*x^2 + 12)*sqrt(e*x + 2)), x)

________________________________________________________________________________________

Fricas [B]  time = 1.89868, size = 158, normalized size = 6.32 \begin{align*} \frac{\sqrt{3} \log \left (-\frac{3 \, e^{2} x^{2} - 12 \, e x + 4 \, \sqrt{3} \sqrt{-3 \, e^{2} x^{2} + 12} \sqrt{e x + 2} - 36}{e^{2} x^{2} + 4 \, e x + 4}\right )}{6 \, e} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+2)^(1/2)/(-3*e^2*x^2+12)^(1/2),x, algorithm="fricas")

[Out]

1/6*sqrt(3)*log(-(3*e^2*x^2 - 12*e*x + 4*sqrt(3)*sqrt(-3*e^2*x^2 + 12)*sqrt(e*x + 2) - 36)/(e^2*x^2 + 4*e*x +
4))/e

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \frac{\sqrt{3} \int \frac{1}{\sqrt{e x + 2} \sqrt{- e^{2} x^{2} + 4}}\, dx}{3} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+2)**(1/2)/(-3*e**2*x**2+12)**(1/2),x)

[Out]

sqrt(3)*Integral(1/(sqrt(e*x + 2)*sqrt(-e**2*x**2 + 4)), x)/3

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{-3 \, e^{2} x^{2} + 12} \sqrt{e x + 2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+2)^(1/2)/(-3*e^2*x^2+12)^(1/2),x, algorithm="giac")

[Out]

integrate(1/(sqrt(-3*e^2*x^2 + 12)*sqrt(e*x + 2)), x)